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Abstract
Existing algorithms for improving speech intelligibility in a
noisy environment generally focus on modifying the acoustic
features of live, recorded or synthesized speech while preserv-
ing the phonetic composition (the message). In this paper, we
present an algorithm for text-to-speech systems that operates
at a higher level of abstraction, the message-level. We use a
paraphrasing system to adjust the linguistic content of the in-
tended message such that the speech intelligibility improves un-
der noisy conditions. To distinguish the intelligibility among
paraphrases, we use the numerical integration of a normal-
ized log-likelihood function over different signal-to-noise con-
ditions. Objective evaluation results show that the developed
measure is able to distinguish the intelligibility among para-
phrases. Results from subjective evaluation confirm the effec-
tiveness of our objective measure.
Index Terms: speech intelligibility, message-level objective
measure

1. Introduction
Recorded or synthetic speech from a text-to-speech system is
increasingly used to deliver information in public announce-
ment systems and private speaking systems embedded in the
computer, mobile, and GPS (Global Positioning System) navi-
gation devices. Unfortunately, the output speech is commonly
presented in a noisy environment, and thus no guarantee can be
made that the conveyed message is understandable. As in the
listed applications the background noise signal cannot be re-
duced, a reasonable speech enhancement approach is to modify
the original speech signal such that the speech intelligibility, a
measure of the degree to which speech can be recognized, im-
proves under adverse conditions.

Existing speech modification algorithms that aim to en-
hance speech intelligibility in a noisy environment using live,
recorded, or synthetic speech can be categorized into two
classes: i) rule-based and ii) objective-intelligibility-measure-
based. The rule-based algorithms [1, 2] are normally inspired
by the fact that human beings tend to change their vocal pro-
duction to adapt to the ambient noise; the resulting speech is
known as Lombard speech [3, 4, 5]. In contrast, objective-
intelligibility-measure-based algorithms [6, 7, 8, 9, 10] mod-
ify the speech signal with the aim to increase the value of an
objective measure. Examples of this measure are the speech in-
telligibility index (SII) [11], the glimpse proportion (GP) [12],
the log-likelihood measure [6], or the perceptual distortion (PD)
[7]. The above two classes of algorithms both involve the inten-
tional modification of acoustic properties presented in speech
segments (e.g., amplitude envelope, temporal fine structure,
fundamental frequency, shifts of formants, and so on). There-
fore, the improvement of speech intelligibility generally comes

at the expense of increasing the signal distortion. Such distor-
tion often causes discomfort and fatigue to the listener, partic-
ularly in presence of severe ambient noise. This suggests that
alternative approaches should be considered.

We draw our inspiration from the approach humans take:
in noisy environments humans rephrase and repeat the mes-
sage. Hence, instead of modifying the acoustic features of the
speech signal, we propose a message-level (MSG-level) speech
intelligibility enhancement algorithm, where the intelligibility
is improved by adjusting the linguistic content of the intended
message. It capitalizes on the linguistic properties that may be
informative for understanding the intended message under the
noise condition [13, 14]. Two operations are required in the
proposed MSG-level enhancement algorithm: 1) paraphrasing,
and 2) distinguishing intelligibility.

The paraphrasing step is to provide the most likely set of
alternatives for a target word or phrase in a given context. One
approach is to apply ranking methods [15, 16, 17] on a list of
candidates extracted from knowledge sources, such as WordNet
[18] and Roget [19]. Another approach is based on automat-
ically extracted paraphrase dictionary using bilingual parallel
corpora [20]. Since the translation between bilingual parallel
corpora preserve the meaning of the original message while
may use different words to convey the meaning, the acquired
paraphrase dictionary is suitable for us to generate paraphrases.

A primary objective of this paper is to distinguish the in-
telligibility among paraphrases given a particular noise condi-
tion. To this end, we start by deriving a MSG-level objective
measure assuming that transcriptions of the paraphrased speech
signals are available. The objective measure is based on the
paradigm we have used for phoneme-level speech intelligibil-
ity enhancement [6], where the improvement of intelligibility is
achieved by maximizing the likelihood of desired speech fea-
tures. One consideration in the present work is that the tran-
scripts are different among the paraphrases and thus, the corre-
sponding speech models are different. Therefore, the resulting
likelihoods are not directly comparable. Our analysis shows
that the paraphrases exhibit different behaviors in terms of log-
likelihood of the speech features over a range of signal-to-noise
ratios (SNRs). We exploit these differences in our MSG-level
objective measure to distinguish the most intelligible phrase in
noisy environment. In an experiment where we select the best
of three paraphrases, our objective measure matches the subjec-
tive results for about 80% of the data.

2. MSG-Level Speech Intelligibility
Enhancement

Figure 1 presents the signal model of MSG-level speech in-
telligibility enhancement for text-to-speech system when the
recorded announcements are rendered in a noisy environment.
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Figure 1: Signal model for MSG-level speech intelligibility
enhancement. s1 is the original message. {sj}j,∈[1, J] is a
set of paraphrases including the original one. {xj}j∈[1, J]

is a set of speech signals corresponding to the paraphrases.
{nj}j∈[1, J] is a set of noise signals. {yj}j∈[1, J] is a set of
noise-contaminated speech signals. x∗ is the identified most
intelligible paraphrase under a certain noisy condition.

We assume that the word-level transcription of the intended
message is available in this work. This transcription is denoted
as s1 in Figure 1. First the paraphrasing system generates possi-
ble paraphrases {sj}j∈[2, J] to express the intended message in
alternative ways, where j is the index of the paraphrase. Then a
set of speech signals are obtained from the speech synthesizer,
indicated by {xj}j∈[1, J]. Presenting the clean speech signals
in a noisy environment (here we consider the additive noise sce-
nario), we have the additive mixtures of the speech and the noise
signal, {yj}j∈[1, J],

yj = xj + nj . (1)

To effectively convey the intended message in a noisy environ-
ment, a comparison system is needed to distinguish the intel-
ligibility among paraphrases and manipulate the paraphrasing
system to output this most intelligible expression, indicated by
x∗ in Figure 1. In the paper we use an existing paraphrasing
system to generate alternative phrases while focusing on the de-
velopment of the objective measure to evaluate intelligibility.

2.1. Paraphrasing

Phrase-based approaches using parallel bilingual corpora have
been shown to produce high quality results for paraphrase ex-
traction [20, 21, 22], word sense disambiguation [23], and sta-
tistical machine translation [24, 25]. In paraphrasing systems,
pairs of translated sentences from a bilingual corpus are aligned,
and the English phrases that share a common foreign language
phrase as a translation are considered to be potential para-
phrases. We adopt the strategy described in [20], which further
applies syntactic constraints to the phrase extraction heuristics,
to generate paraphrases as inputs to the intelligibility compari-
son system.

2.2. Distinguishing Intelligibility

A MSG-level objective measure to distinguish the intelligibility
among paraphrases is established in this section. The algorithm
proposed here assumes that the statistics of the noise signal is
known (or can be estimated).

Let F represent some parametric description of the speech
signal. Given the phonetic transcription of the speech signal of

each paraphrase, denoted by tj , we write the probability dis-
tribution of the features as p

(
Fxj |tj

)
. Let Fn represent some

parametric features of the known environmental noise. Then
the feature distribution of the noise-contaminated speech yj can
be represented by p

(
Fyj |Fxj ,Fnj

)
. Given Fyj and a corre-

sponding speech model νj for decoding the speech features, the
probability over the space of the decoded transcription τ j is
p
(
τ j |Fyj , νj

)
. The probabilities of all possible transcriptions

must add up to one:

p
(
tj |Fyj , νj

)
+

∑
τj ,τj 6=tj

p
(
τ j |Fyj , νj

)
= 1. (2)

The higher value of the first term on the left side of the equation,
the smaller value of the second term, which implies a higher
degree of intelligibility. Therefore, we use the ratio of the two
terms as an indicator of intelligibility. Applying Bayes’ rule to
the probabilities, the ratio reads

Rj =
p
(
Fyj |tj , νj

)
p (tj |νj)∑

τj ,τj 6=tj
p
(
Fyj |τ j , νj

)
p (τ j |νj)

. (3)

Notice that there is a monotonic relation betweenRj and its nu-
merator p

(
Fyj |tj , νj

)
p (tj |νj). As the denominator in (3) in-

volves evaluating the likelihoods given all alternative transcrip-
tions, which dramatically increases the computation cost, for
practical purposes, it is feasible to focus only on the term con-
taining the correct transcription while omitting all alternative
transcriptions. Then, we take logarithm of the numerator and
use it as an objective measure of intelligibility,

Lj = log
(
p
(
Fyj |tj , νj

))
+ log (p (tj |νj)) . (4)

However, the transcripts are different among phrases and the
corresponding speech models, {Lj}j∈[1, J] are not directly
comparable.

We propose a relative method where the degradation of a
speech in a noisy environment is considered as a key element.
For each phrase xj , varying the SNR results in a sequence of
{Li

j}i∈[1, I], where i is the index of SNR condition with i = 1
referring the noise signal and i = I the clean speech. Since
the range of log-likelihood among phrases varies widely, we
normalize it by rescaling its range to [0, 1], where the minimum
of 0 corresponds to the likelihood of the noise signal and the
maximum of 1 to the likelihood of the clean signal [26].

As the intelligibility of a noise-contaminated speech signal
will not be worse than a noise signal, we normalize the likeli-
hood such that its minimum is given by the noise signal. On
the other hand, when a small amount of noise is added to the
speech, Li

j might greater than that of the clean speech (LI
j )

as the noise smooths the spectrum of the speech, especially in
speech-shaped noise. However, perceptually, the noisy speech
would not be more intelligible than clean speech. Therefore, we
set the maximum of {Li

j}i∈[1, I] to one. Then, the normalized
likelihood L̃i

j is

L̃i
j = min{

Li
j − L1

j

LI
j − L1

j

, 1}, i ∈ [1, I], j ∈ [1, J ]. (5)

As the second term in (4) is not affected by the noise, it is can-
celed out in this normalization. Thus, Li

j can be simplified to
calculating the log-likelihood of the correct transcription after
observing the Fyi

j
,

Li
j = log

(
p
(
Fyi

j
|tj , νj

))
. (6)



We can see that {L̃i
j}i∈[1, I] is actually a function of SNR

with its value within [0, 1]. Let L̃j(s), s ∈ [SNR1, SNRI ] de-
note the function. For any given SNR s0, the closer the L̃j(s0)
is to 1, the more robust the speech is to the noise. To obtain a
single measure of robustness for each phrase, we integrate this
measure of robustness over all SNR. That is, we define the inte-
gral

∫
s
L̃j(s)ds as the MSG-level objective measure to indicate

the robustness of the phrase to the noisy condition. The numer-
ical approximation of the integration is then given by

Oj =

I∑
i=1

L̃i
j∆si. (7)

Hence, under a certain noisy environment, the most intelligible
phrase xj∗ (indicated by x∗ in Figure 1) in the set {xj}j∈[1, J]

is identified, where

j∗ = arg max
j

Oj , j
∗ ∈ [1, J ]. (8)

2.3. Hidden Markov Model Based Implementation

In this subsection, we discuss the evaluation of (7) in a practical
system. In particular we consider the specification of the speech
model ν and the type of the speech feature F.

The speech model we use builds upon hidden Markov mod-
els (HMMs) [27]. Gaussian mixture models (GMMs) are em-
ployed to approximate the distributions of speech features asso-
ciated with the states of the HMMs. As the pronunciation of a
word or subword unit, such as a phone, depends heavily on the
context, we use the context-dependent speech model consisting
of three emitting states.

The Mel-frequency cepstral coefficients (MFCCs) [28] are
commonly used as features in ASR system. In such applica-
tions, the MFCC feature set usually consists of 12 static MFCCs
and 24 dynamic MFCCs, the first and second-order differen-
tials of the static MFCCs, with cepstral mean normalization
(CMN) [28].

The dynamic MFCCs and CMN reduce the effect of noise
and compensate partially for the difference between the noise-
contaminated speech and the clean speech. This is essential in
an ASR system. However, the main purpose of this work is to
reveal sensitivity of the likelihood to the noise. Thus, the effect
of noise should not be cancelled out. Therefore, we use 12 static
MFCCs only and they are not normalized by CMN.

After defining ν and F, we can calculate L̃i
j in (7). As the

frame-number over a phone and the number of phones over a
phrase both vary, we apply the invariance correlation, i.e.,

Li
j ≈

1

K

K∑
k=1

Lk∑
l=1

1

Lk
log
(

p
(
Fk;l

yi
j
|tkj , νj

))
, (9)

where k is the phoneme index, l is the frame index within the
k-th phone, tkj is the k-th phoneme in the transcription tj , and
Fk;l

yi
j

are the features of l-th frame within the k-th phone of the

noisy speech.

3. Experimental Results
In this section, we describe the objective and subjective evalua-
tion setup and present their evaluation results.

3.1. Objective Evaluation Setup

To test the proposed system, we conducted objective evalua-
tions under three noise conditions, viz., airport, car, and speech-
shaped, where the noise signals are from Aurora 2.0 database.
We designed 15 English phrases, five for each noise condition.
Based on the 15 phrases, a paraphrase dictionary was generated
using the technique described in [20]. As the generated dic-
tionary still contains many paraphrases that are either simply
repetitions or inappropriate in the given context, we manually
checked the grammaticality and meaning preserving nature of a
paraphrase. The resulting speech material consists of 43 phrases
in total, five sets of phrases for each type of noise with two or
three paraphrases in each set.

The clean speech signals were synthesized with a well-
known commercial text-to-speech system, using a female
speaker at 16kHz sampling rate. We first normalized both the
speech signal and the noise signal such that their L2 norms are
1, i.e., ‖xj‖ = 1 and ‖nj‖ = 1. Then we mixed them for a se-
quence of SNR values varying from 100 dB to -100 dB. In order
to obtain the desired SNR, we used the FaNT tool [29] with the
”-u -m snr 8khz” option. The noise realization is different for
each phrase while it remains the same when varying the SNR.

For each set, the most intelligible phrase was then dis-
tinguished using (8) where the log-likelihood is calculated
from (9) given the static MFCCs extracted from the mixed sig-
nal and the context-dependent phoneme models.

The phoneme model is pre-trained from an HTK-based au-
tomatic speech recognition (ASR) system [29] on clean speech.
The training data consists of 7138 utterances from the Wall
Street Journal (WSJ0) database [30], at a sampling frequency
rate of 16 kHz. We use the CMU dictionary (ver. 0.6) [31]
for forced-alignment between phonetic transcription and wave-
forms. The analysis frame length is 25 ms and the updated
frame length is 10 ms.

3.2. Subjective Evaluation Setup

We conducted subjective experiments to evaluate the perfor-
mance of the objective measure. The listening experiment was
carried out by six non-native English speakers aged between 25
and 32. We used the same speech material as that in the objec-
tive evaluation, 43 phrases in three noise conditions. The SNR
level for the listening test was fixed at -4 dB for the short phrases
with no more than five words and -2 dB for the long phrases.

The phrases categorized in the same set have the same
meaning and share some common words. If they are played
in order, the subjects may benefit from previous experience of
listening. Therefore, we scrambled the 43 utterances and pre-
sented them in a way that the consecutive utterances belonging
to the same set are not played in order. After playing out an
utterance, the subjects were asked to type in the perceived mes-
sage.

We compute the recognition rate for an utterance as an av-
eraged ratio of the correctly identified (misspelt words are in-
cluded, such as ’regieon’ is considered as ’region’) and the total
number of words over the subjects. The higher the recognition
rate the more intelligible the prase.

3.3. Evaluation Results

Figure 2 shows the objective evaluation results, the normalized
log-likelihood of three sets of paraphrases [20] in three noisy
conditions with SNR varying from -100 dB to 100 dB. The like-
lihood behaviors are similar in the three noisy conditions. With
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Figure 2: The normalized log-likelihood of features of the paraphrases [20] in three noisy conditions with SNR varying from -100dB to
100dB. (a) Airport Noise: j = 1 the school for ladies; j = 2 the school for women; j = 3 the school for girls. (b) Car Noise: j = 1
the very beginning; j = 2 the starting point; j = 3 the very first step. (c) Speech-Shaped Noise: j = 1 the tough problem; j = 2 the
difficult problem; j = 3 the tricky problem.
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Figure 3: Scatter plot between objective measure calculated by (7) and the averaged subjective word recognition rate for each phrase.

the increase of SNR, the likelihood gradually increases from
zero given by noise to one given by the clean speech. We can
clearly see the difference of the area under each curve, which is
utilized to distinguish the intelligibility among phrases. A more
robust phrase gives a higher value of normalized likelihood un-
der the same SNR condition and, thus, creates a larger area.

The objective measures of the phrases shown in Figure 2
and their subjective evaluation results are summarized in Ta-
ble 1. We can see that a higher value of objective measure usu-
ally corresponds to a higher word recognition rate. In the whole
experiment where we select the best of three paraphrases, our
objective judgment matches the subjective results for about 80%
of the data (12 matches out of 15 sets). A one-tailed binomial
test shows that the match between objective judgment and the
subjective judgment is statistically significant (p < 0.001).

The scatter plots in Figure 3 also show a positive correlation
between the objective measure and the subjective word recog-
nition rate. The solid lines are the linear regression lines that
fit the data in a least squares sense. The corresponding corre-
lation coefficients are 0.44, 0.64, and 0.48 for airport, car, and
speech-shaped noise, respectively.

As the phrases are not professional designed, they might not
be equally understandable to non-native subjects. This might
induce bias to the subjective evaluation and weaken the correla-
tion.

4. Conclusions
In this paper, a message-level paradigm was studied in an at-
tempt to enhance the speech intelligibility without distorting the
speech signal. We formulated the MSG-level objective measure
as the numerical integration of the normalized log-likelihoods

Table 1: Objective Judgment vs. Subjective Judgment.

Noise
j

Objective Measure Word Recognition Rate
Type Oj (%)

Airport 1 103.2 0.46
2 102.3 0.50
3 106.6 0.83

Car 1 91.7 0.50
2 99.5 0.94
3 102.9 0.92

Speech 1 99.7 0.94
2 98.8 1.00

Shaped 3 94.2 0.72

function obtained at different signal-to-noise conditions rang-
ing from clean speech to noise. The proposed measure was
tested under three noise conditions and a positive correlation
between the objective measure and the subjective word recog-
nition rate is observed. A natural next step is to improve the
objective measure by taking into account the lexical effects and
perform experimental validation on native English speakers for
more noise types.
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