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Abstract

The intelligibility of speech in adverse noise conditions can be
improved by modifying the characteristics of the clean speech
prior to its presentation. An effective and flexible paradigm is
to select the modification by optimizing a measure of objective
intelligibility. Here we apply this paradigm at the text level and
optimize a measure related to the classification error probabil-
ity in an automatic speech recognition system. The proposed
method was applied to a simple but powerful band-energy mod-
ification mechanism under an energy preservation constraint.
Subjective evaluation results provide a clear indication of a sig-
nificant gain in subjective intelligibility. In contrast to existing
methods, the proposed approach is not restricted to a particu-
lar modification strategy and treats the notion of optimality at
a level closer to that of subjective intelligibility. The computa-
tional complexity of the method is sufficiently low to enable its
use in on-line applications.
Index Terms: speech modification, subjective intelligibility,
statistical model of speech

1. Introduction
Speech signal modifications for improved subjective intelligi-
bility represent an area of active research. Human strategies,
such as the Lombard effect, are analyzed to understand better
the importance of changes in various speech descriptors dur-
ing speech production in noisy environments [1, 2]. A number
of methods inspired by but not limited to human modification
strategies have been proposed for speech enhancement for en-
gineering applications. These can be classified into two main
groups: i) rule-based methods with heuristic motivation, e.g.,
[3, 4, 5, 6] and ii) methods that optimize an objective measure,
which correlates with subjective intelligibility, e.g., [7, 8]. We
favor the second approach as it provides a figure of merit in-
dicative of the performance of the algorithm and facilitates the
analysis of its behavior. The most fundamental intelligibility
measure one can apply is the accuracy of the conveyed mes-
sage. Existing measures commonly approximate this measure
at lower levels of abstraction such as, e.g., short-term spectra.

In the context of i) speech synthesis, ii) playback of pre-
recorded media such as audio books and podcasts, or iii) script-
based presentations such as news broadcasts and weather fore-
casts, it can be assumed that a word-level transcription of the
message is available. More generally, in any situation where
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the clean speech signal can be accessed, a fairly accurate tran-
scription can typically be obtained with a state-of-the-art speech
recognition system at the cost of increased computational com-
plexity. Automatic speech recognition, however, is not the focus
of this paper. In the following we assume that a transcription of
the speech signal is available at the time of presentation.

When the speech waveform is a-priori available or the
speech is synthesized, a large range of modification parameters
become available. These include the expansion of the vowel
space and the modification of phoneme time durations [1, 9, 10],
as well as gain adjustments in the spectral and the time domains
at the phone, word or utterance levels. The influence of a large
number of these modifications will be reflected inadequately in
the score of measures that operate at a low level of abstraction
such as, e.g., the speech intelligibility index (SII) [11]. The as-
piration for achieving optimality at a higher level and the possi-
bility for applying various modifications within the same frame-
work motivates us to explore from the start a more fundamental
intelligibility measure. Using a model of clean speech from an
automatic speech recognition (ASR) system, we formulate an
objective measure as the likelihood of the noisy utterance, com-
puted in terms of a sequence of feature vectors, conditioned on
the correct transcription and the speech model.

To place our work in perspective we first look at earlier
methods. Most common is the application of rule-based modi-
fications. In [3, 12] the energy of the speech signal is increased
one spectral band after the other to achieve a target separation
from the noise floor. Transients and consonants are emphasized
in [4, 5] respectively. Intelligibility in the methods above is im-
proved at the cost of increasing the total energy of the speech
signal. For practical purposes, power limitations need to be ap-
plied to avoid hearing damage or distortions due to, e.g., non-
linear effects in the audio equipment. Rule-based computation
of the band-specific gains followed by energy preservation com-
pensation is performed in [6].

More recently, the use of objective speech intelligibil-
ity models (IMs) has been introduced [7, 8]. Speech IMs
[11, 13, 14] commonly operate at a relatively low level of ab-
straction. They extract features from the noisy and the clean
speech signals and map them to an intelligibility score. The
intelligibility measures considered in [7, 8] are based on the
speech intelligibility index (SII) [11]. While SII has a number
of limitations [15], it is attractive due to its simplicity. Being a
function of the band-specific speech and noise power levels, it
facilitates the computation of the optimal speech gain for each
band given the power of the noise. It is also relatively straight-
forward to integrate a power constraint [7]. An alternative low-
level measure is considered in [8] in addition to the SII. It is
based on the front-end processing stage of a high-level IM [16],



which in its entirety includes a missing-data speech recognizer.
The evaluation results for the above-listed modification al-

gorithms indicate that using an intelligibility measure to select
the optimal speech modification is well-motivated. To ensure
high-level optimality and at the same time enable the use of a
broad range of modification parameters, a more general mea-
sure of intelligibility is needed. We show that it is possible to
define a practical measure that operates at the text level. We val-
idate the proposed measure with a listening test using a band-
energy modification mechanism under an energy preservation
constraint.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the philosophy behind the proposed modification
framework. Section 3 describes the practical considerations re-
lated to the implementation of the proposed method. Section
4 presents the experimental results, followed by conclusions in
Section 5.

2. A Paradigm for Increased Intelligibility
The objective with modifying speech prior to its presentation in
a noisy environment is to enhance the capability of the speech
signal to carry the message to the listener. Figure 1 presents a
hierarchical view of the communication process. It indicates the
levels of abstraction at which modifications can be applied to
counteract the effect of distortions in the transmission channel.
Starting from the top of the hierarchy, it is possible to adjust
i) the choice of words used to represent the message, ii) the
pronunciation of the selected words and iii) spectral properties
unrelated to prosody, e.g., band-specific energy levels. Recent
algorithms [4, 7, 8] perform modifications at the lowest level of
abstraction.

To establish the benefit of a modification, we would ide-
ally like to compare the intended and the perceived messages.
If we perform this comparison in an optimization loop in which
we modify the speech, we can select the modification that maxi-
mizes the resemblance between the two messages. From a prac-
tical viewpoint, however, such a setup is not attractive due to the
need for a subject in the processing loop and the inherent delay.
The work-around is to select the modification by optimizing the
output of an objective speech intelligibility measure. The mea-
sures currently in use operate predominantly on the listener-side
short-term spectra level in the hierarchy of Figure 1. While this
can be a computationally efficient strategy, it is tailored to a
particular modification and considers optimality at a low level
of abstraction.

In this study we assume that a word-level transcription of
the presented utterance is available. This allows us to perform
matching at the text level, which is the highest level of abstrac-
tion (cf. Figure 1) for which at the current stage of technology
an effective objective measure can be applied. The proximity to
the message level suggests that modification selection based on
optimization of this objective measure is less affected by mis-
matches between subjective and objective intelligibility. We fo-
cus explicitly on the scenario with modifying recorded speech
as it facilitates the implementation and the validation of the pro-
posed approach. While there are no explicit constraints on the
type of distortion within the proposed framework, we focus on
additive noise due to its broad practical relevance.

The signal model for the additive noise scenario is given by

yk = xk + nk, (1)

where x is the speech, n is the noise, y is the additive mix-
ture of the speech and noise sources, and k indicates the time
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Figure 1: Hierarchical representation of speech communication.

instant. In addition, we introduce the operator Υ, which ap-
plied to a sequence of samples y = [y1 y2 · · · yL], produces
a sequence of feature vectors, represented in matrix notation as
F = [f1 f2 · · · fJ ]T , i.e.,

F = Υ {y} . (2)

The number of samples in y as well as the number and the di-
mensionality of the row vectors in F depend on the duration
of the modification window and the choice of features. When
using a speech model from an ASR system, the feature set is
most commonly based on Mel-frequency cepstral coefficients
(MFCCs) [17]. If we assume that the noise is wide-sense sta-
tionary, the duration of the modification window represents a
trade-off between the specificity of the modification and its flex-
ibility. The longer the window gets, the less tailored to a particu-
lar sound the modification becomes. At the same time a longer
window implies a broader range of possibilities for, e.g., en-
ergy redistribution. If the noise statistics are changing as well,
the trade-off must include the accuracy of the predicted noise
statistics for the length of the modification window.

We next introduce the objective function. From the per-
spective of minimizing the classification error, our objective is
to maximize the posterior probability:

p (t | F , S, c) =
p (F | t, S, c) p (t | S, c)

p (F | S, c)
, (3)

where t is the correct transcription of the utterance, S is the
speech model taken from an ASR system pre-trained on clean
speech, and c contains the set of modification parameters. Al-
ternatively and equivalently, from a theoretical viewpoint, we
can minimize the probability of the set of all alternative tran-
scriptions tia, i ∈ {1, 2, · · · , I} :

I∑
i=1

p
(
tia | F , S, c

)
=

∑I
i=1

{
p
(
F | tia, S, c

)
p
(
tia | S, c

)}
p (F | S, c)

,

(4)
whose cardinality I is a finite number. The two criteria can
be combined to formulate another theoretically equivalent op-
timization problem. This is achieved by taking the logarithm
of the right-hand-side of (3) and adding it to the sign-inverted



logarithm of the right-hand-side of (4). The sign inversion is
necessary to express both formulations as maximizations. Af-
ter some manipulation of the resulting expression, the objective
function is obtained of the form:

O = log {p (F | t, S, c)}

− log

{
I∑

i=1

{
p
(
F | tia, S, c

)
p
(
tia | S

)}}
, (5)

where the correct and the alternative transcriptions appear in
separate terms. For practical purposes, the use of (5) is com-
plicated by the need to maintain and evaluate the probabilities
of all alternative transcriptions. It is feasible to approximate the
second term by including only the alternatives that achieve the
highest scores. In the extreme case, we can omit all alterna-
tive transcriptions. This is the scenario we consider here. The
optimization problem we intend to solve is:

c? = argmax
c

log {p (F | t, S, c)} . (6)
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Figure 2: A diagram of the proposed system operation.

An illustration of the proposed approach is presented in Fig-
ure 2. A dashed line is used for the noise source to indicate that
the noise waveform is not available and we work with an esti-
mate of the statistics of the disturbance. A thick line is used for
signal x to indicate that this is a closed-loop system in which
only the optimally-modified signal is presented to the listener.

3. Practical considerations
The computation of p (F | t, S, c) from (6) requires access
to the sequence of acoustic models associated with an utter-
ance. While this information is a-priori available in a model-
based speech synthesis system, we need to derive it off-line
for a recorded utterance. We achieve this by performing forced
alignment [17] between the correct transcription and the clean
speech signal. The outcome of this operation provides us with
an ordered list of acoustic models as well as segmentation in-
formation and transition probabilities. Consequently, each fea-
ture vector f j is associated with a particular acoustic model,
represented by a Gaussian mixture model (GMM) from S.
Given the Markovian nature of the adopted speech model [17],
p (F | t, S, c) is computed as

p (F | t, S, c) =

J∏
j=1

p
(
f j |mj , c

)
p (mj+1 |mj) , (7)

where mj represents the state associated with frame j and
p (mj+1 |mj) is the transition probability between the two
states. Note that since we do not apply temporal modifications,
the transition probabilities remain constant and do not affect the
optimization process.

We chose to validate the proposed text-level intelligibil-
ity measure using a low-level modification strategy. It per-
forms the optimization of band-energy gains, similar to [7, 8],
under an energy preservation constraint. We used a discrete
Fourier transform (DFT) filter-bank with a small number of
channels (cf. Table 1). The bands are equally large on a mel-
frequency scale to account for the spectral resolution of the hu-
man auditory system [18]. The set of modification parameters
cT = [c1, c2, · · · , c8] can now be used to express the energy
preservation constraint. The optimization problem in its practi-
cal formulation becomes:

c? = argmax
c

J∑
j=1

log
{

p
(
f j |mj , c

)}
s.t. cTē = 1, c ≥ 0, (8)

where ēT = [ē1, ē2, · · · , ē8] are the normalized band-
energies in the original speech signal for the present modifi-
cation window.

Table 1: Top cut-off frequencies (fc) in the filter-bank in kHz.

fc 0.26 0.61 1.10 1.77 2.68 3.93 5.65 8.00

The problem formulation from (8) can be solved with stan-
dard software packages for constrained optimization. To speed
up convergence, we used a finite difference approximation for
the gradient of the objective function [19], due to its compli-
cated dependence on c. The small number of parameters and
the a-priori established link between frames and GMMs ensure
low computational complexity.

The speech model S was taken from an HTK-based ASR
system [17] trained on 7138 utterances from the Wall Street
Journal database. The signals were sampled at 16 kHz. We em-
ployed the CMU dictionary (version 0.6) [20]. The recognition
system was validated on utterances from the November 1992
CSR Speaker-Independent 5K Read Non-Verbalized Punctua-
tion test set, for which the recognizer achieved word correctness
of 93.82 % in the absence of noise.

The feature set for a signal frame consisted of 12 MFCCs
and the log energy, together with their first and second differ-
entials, i.e., 39 features in total. The frame length was 25 ms
and the frame update rate was 10 ms. Cepstral mean normal-
ization (CMN) [17] was applied to the cepstral coefficients for
the duration of the modification window. CMN compensates
partially the deviation of the modified speech from the speech
model S, which was constructed for natural speech. This allows
the system to perform more extreme spectral modifications.

4. Experimental Results
We conducted a listening test with 30 utterances and eight sub-
jects to assess the performance of the proposed approach. The
clean speech recordings were taken from [21] and were spo-
ken by a male native American English speaker. The speech
material is composed of lists 44, 45 and 46 from the Harvard
sentence database [22]. We mixed the speech signal with multi-
speaker babble noise [23] at −3 dB SNR. The noise level was



chosen such that subjective intelligibility is severely degraded
but spectral energy redistribution is capable of producing an ef-
fective improvement.

Speech modification was performed at the word level, i.e.,
the length of the modification window adapted to the duration
of each word. The algorithm had access to the mixture signal y,
which means that we used an estimate of the true noise power
spectrum in each frame of the modification window. In a prac-
tical application, the noise power spectra in the future cannot be
estimated and must be predicted. While our results can be seen
as an upper bound on the expected performance in on-line ap-
plications, oracle access to the noise spectra is not anticipated
to be critical for multi-frame modifications and relatively sta-
tionary noise backgrounds, as considered here.

The subjective evaluation protocol can be summarized as
follows. Fifteen of the utterances (modified) and the remaining
fifteen (original) were presented in noise to half of the subjects.
The reverse combination of modified and original material was
presented to the remaining subjects. Thus, no subject evalu-
ated both the original and the modified versions of the same
utterance. Presentation within each of the two sets followed a
randomized order where modified and original utterances alter-
nated. After a presentation, each subject typed in the perceived
message using blank spaces when unable to identify words.

To evaluate the method performance we computed the
recognition rate for a subject and utterance as the ratio of the
correctly identified to the total number of words. We averaged
these recognition rates over the subjects and the utterances, sep-
arately for the original and modified versions, producing the
mean recognition rates :

r̄o = 0.379, r̄m = 0.594

where the suffixes o and m stand for original and modified, re-
spectively. We also applied the Wilcoxon signed rank test [24]
to the series of per-utterance recognition rates corresponding to
modified and original utterances respectively. It revealed a sig-
nificance of the difference at a level lower than 10−5.

5. Conclusions
A general paradigm for enhancing the intelligibility of speech in
noise, based on the optimization of an objective measure, was
discussed. We formulated a fundamental and practical intelli-
gibility measure as the likelihood of a noisy utterance given its
transcription and a statistical model of clean speech. We applied
the proposed approach to speech in multi-speaker babble noise
using a simple but effective band-energy modification mecha-
nism under an energy preservation constraint. The results from
a subjective evaluation confirmed the validity of the approach.
A natural next step is to extend the set of modifications param-
eters and perform experimental validation for different noise
types and SNR levels.
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