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Abstract 
This paper describes a statistical parametric speech synthesizer 
that, despite having been trained on an ordinary synthesis 
database and without any adaptation data, is able to generate 
highly intelligible speech in noisy environments. By using a 
simple and flexible vocoder based on a harmonic model, it 
applies several noise-independent modifications to durations, 
pitch level and range, energy contour, formant sharpness, and 
intensity of particular spectral bands. The system has been 
evaluated by means of a large subjective test, the results of 
which show that the suggested approach clearly outperforms 
the reference TTS systems and even unmodified natural 
speech in some conditions. 
Index Terms: statistical parametric speech synthesis, speech 
intelligibility in noise, speech modification and transformation 

1. Introduction 
Speech synthesis databases are usually recorded at very high 
signal-to-noise ratio (SNR) in silent or even anechoic rooms. 
While being recorded, human speakers unconsciously adapt 
their voice to this particular environment. Synthetic voices 
built from the recorded database inherit the acoustic 
characteristics of the human voice. Then, when the synthesizer 
is used in noisy conditions (at the airport, for instance) it is 
often hard for listeners to understand the message. The 
problem is evident: while human talkers are capable of 
adapting their voices to the environment, machines are not. It 
is therefore necessary to develop methods for enhancing the 
intelligibility of clean synthetic speech before it is played in a 
noisy environment. 

Previously, this problem has been tackled in two different 
ways: (i) recording a new database in the desired conditions 
and then using voice conversion, speaker adaptation, 
inter/extrapolation, or any other statistical mapping technique 
to transform one style into the other [1][2][3][4]; (ii) using the 
original clean speech database and applying expert knowledge 
and signal processing techniques to enhance the output of the 
synthesizer [5][3]. The main advantage of the latter strategy is 
indeed the fact that it is costless. It requires, nonetheless, an 
adequate flexible signal processing framework. 

With this goal in mind, in a previous work [6] we showed 
the usefulness of a simple harmonic model to enhance the 
intelligibility of clean natural speech in noise. In this paper we 
go one step beyond: we have developed a hidden Markov 
model (HMM) based text-to-speech (TTS) synthesizer (see [7] 
for a review on this widespread synthesis technology) 
involving a harmonic vocoder which provides both a reliable 
and effective way of parameterizing and reconstructing speech 

and a high degree of flexibility for different types of 
manipulations. Several deterministic noise-independent 
modifications are performed at spectral and prosodic level: 
controlled signal lengthening, pitch and pitch range upward 
modification, dynamic range compression applied to the 
energy contour, voicing-dependent postfiltering, and 
enhancement of specific spectral bands. The resulting system 
has been evaluated together with many others in the context of 
the Hurricane Challenge [8]. The participants of this 
international evaluation campaign were provided with a corpus 
of recorded sentences along with separate noise signals at 
different SNR conditions. The task to be accomplished was to 
modify the natural or synthetic speech in such a way to 
promote its intelligibility, while meeting some constraints on 
duration and keeping the SNR unaltered. The results achieved 
by our system confirm the usefulness of the harmonic model 
and show that the simplicity of the modifications made is not 
at odds with their effectiveness. In the remainder of this paper, 
the proposed system is described in detail and the evaluation 
results are shown and discussed. 

2. Synthesizer and Vocoder 
The system is based on version 2.1.1 of HTS, the well known 
open-source HMM-based speech synthesis system [9]. HTS 
models the acoustic feature vectors provided by a vocoder by 
means of context-dependent 5-state left-to-right hidden semi 
Markov models (HSMMs) [10]. In this particular case, a 
speaker-dependent system was trained from 2863 short 
utterances at 16 kHz sampling frequency which were provided 
by the Hurricane Challenge organizers. The context labels 
used to feed the statistical engine and their corresponding 
questions for the context-clustering trees were provided by the 
organizers as well. They had been generated according to the 
Combilex pronunciation lexicon [11].  

Two acoustic feature streams are used: log-f0 and a 39th 
order Mel-cepstral representation of the spectral envelope. No 
explicit excitation-related stream is given as input to the 
system because the benefits of doing so (slightly better quality 
[12], basically) vanish when synthetic speech is played in 
noise. Pitch related information is modeled by means of multi-
space distributions (MSD) [13] due to its discontinuous nature, 
while spectrum is modeled through continuous HSMMs. 

Encouraged by the results reported in [6], we use a purely 
harmonic vocoder to analyze the training data and reconstruct 
the synthetic waveforms from parameters. This vocoder is a 
simplified version of the one presented in [14]. The analysis 
steps performed by the vocoder are the following: (i) pitch 
detection and binary voicing decision [15]; (ii) least squares 
based full-band harmonic analysis assuming f0 = 100 Hz in 
unvoiced frames [16]; (iii) spectral envelope recovery from 

Interspeech 2013 Paper Submission #943, Con�dential.

Page 1 of 5



FO
R 

RE
V

IE
W

 O
N

LY

FO
R 

RE
V

IE
W

 O
N

LY

harmonic log-amplitudes via interpolation; (iv) calculation of 
its corresponding cepstrum and translation into Mel-frequency 
scale [17]. During synthesis, the amplitude and minimum 
phase of the harmonics are obtained by sampling the log-
spectral envelope given by the Mel-cepstral coefficients at 
multiples of f0 (100 Hz if unvoiced). In the absence of an 
explicit excitation model, we assume a mixed excitation given 
by an energy-dependent maximum voiced frequency; once it is 
predicted from the local 0th Mel-cepstral coefficient as 
suggested in [14], the harmonics at higher frequencies are 
given random phases. 

3. Prosodic and Spectral Modifications 
Given the flexibility of both the parametric synthesis 
framework and the vocoder, many types of modifications can 
be applied to generate more intelligible and noise-robust 
speech. As shown in Figure 1, the system described in this 
paper includes noise-independent modifications at three 
different stages: on the context labels (point 1 in Figure 1), on 
the parameters generated by the statistical engine (point 2), 
and on the internal parameters of the vocoder (point 3). All 
these modifications are described in the next subsections. 
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Figure 1: Block diagram of the proposed system. 
Modifications are made at points 1, 2 and 3. 

3.1. Duration 
Some relationship between speech rate and intelligibility was 
found in [18][19][20]. In the context of this particular 
evaluation [8], the duration increments are not arbitrary 
because the maximal duration is imposed by the noise samples 
to be combined with the signals. Therefore, we slow down the 
speech rate as follows: 
• After loading the sequence of HSMMs that matches the 

input context labels, we obtain initial estimates of the 
phoneme durations by summing the average duration of 
their five underlying HSMM states. 

• All these average phoneme durations are multiplied by the 
same factor in order to cover the whole available time slot 
(equal to the duration of the noise samples). In some cases, 
excesively high factors result in unnatural synthetic speech 
because the models (particularly the statistics related to the 
dynamic features) have been trained with speech uttered at 
faster rates. To alleviate this, we consider a maximum 
lengthening factor of 1.2. 

• We explicitly impose the modified phoneme durations 
through the input context labels (point 1 in Figure 1) and 
generate the speech parameters accordingly. 

• During generation, we use a slightly modified engine in 
which the duration of each phoneme is distributed over its 
HSMM states proportionately to their theoretical average 
duration, except when the elongation exceeds a given 

threshold. Beyond this threshold, only the central state is 
lengthened. 

3.2. Pitch level and range 
Previous studies reported that artificial f0 modifications do not 
produce clear intelligibility improvements [21][22][23]. 
However, pitch modifications make artificially modified 
speech more consistent with the way Lombard speech is 
produced. Human Lombard speech is known to exhibit 
spectral tilt differences with respect to normal speech [23]. 
These differences appear when human talkers increase the 
subglottal pressure, which results in a more pressed phonation. 
The observed spectral variations are mainly a consequence of 
such a new glottal excitation. Apart from this, higher 
subglottal pressure implies more rapid vocal fold vibration, 
which means that spectral variations are accompanied by 
higher fundamental frequencies. To make our spectrally 
modified synthetic speech closer to natural, we artificially 
introduce this pitch increment effect by means of constant 
modification factors. We use factor 1.2 for f0 and factor 1.5 for 
the standard deviation of log-f0 throughout the utterance, 
which is directly related to the f0 range. To avoid redundant 
resamplings of the spectral envelope, this is made just after 
parameter generation and before waveform generation by the 
vocoder (point 2 in Figure 1). 

3.3. Energy contour 
Since many low-energy phonemes play a decisive role in 
intelligibility (plosives, fricatives, vocalic onsets and offsets, 
nasals [24]), dynamic range compression (DRC) [25] is 
applied to amplify them at the expense of some energy 
reduction at high-energy segments. DRC was already shown to 
play a relevant role in the design of intelligibility enhancement 
systems dealing with natural speech [26][6]. Nevertheless, the 
way DRC was applied was slightly different in the two 
mentioned papers. In [26] it was applied in a sample-by-
sample basis, while in [6] constant multiplicative factors were 
used within each frame. We have chosen the latter strategy 
because of its higher efficiency and also because it can be 
controlled at vocoder level (point 3 in Figure 1), before 
waveform generation. 

The procedure can be mathematically described as 
follows. First, the sum of squared harmonic amplitudes is used 
as an estimation of the energy at frame k: 
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where I(k) is the number of harmonics between 0 Hz and the 
Nyquist frequency, and {Ai

(k)} are obtained by resampling the 
Mel-cepstral envelope at multiples of the modified local 
fundamental frequency [14]. A new set of mapped energies is 
obtained by means of a non-linear function drc(·) and a 
correction factor γ that keeps the total energy constant: 
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Function drc(·) is depicted in Figure 2. This new energy 
contour will be imposed to the harmonic amplitudes in 
expression (4), after performing the remaining spectral-level 
operations. 
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Figure 2: Energy mapping curve for DRC, where 
emax = max{e(1), …, e(K)} 

3.4. Formant sharpness 
A postfiltering procedure is applied to sharpen the formant 
structure. Instead of using a constant postfiltering factor, to 
avoid the appearance of artifacts, we follow the strategy 
suggested in [26], where the factor was obtained by 
multiplying a constant term, 0.25, by the local probability of 
voicing, pv

(k). Whereas in the mentioned work this required 
pv

(k) to be estimated from the signal waveform, in HMM-based 
synthesizers the probability of voicing is one of the internal 
variables that define the states of the MSD-HSMMs used for 
log-f0 contour generation. Therefore, in this system pv

(k) is 
taken directly from the state sequence during generation, 
without any extra computational load. 

Even though the system generates Mel-cepstral vectors, 
instead of implementing the postfiltering operation in the 
cepstral domain as in [26], we operate on the harmonic 
amplitudes using the implementation described in [27]. This 
allows a more precise control of the energy (the 0th Mel-
cepstral coefficient is not linearly proportional to the energy) 
and alleviates inaccuracies in some involved operations such 
as spectral slope estimation. Omitting the frame index k for 
clarity, postfiltering is performed by multiplying each of the I 
harmonics {Ai} by the following term [27]: 
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3.5. Intensity 
Spectral modifications mimicking intensity increments have 
been shown to enhance the intelligibility of natural speech in 
noise [23]. It is logical to assume that this is also true for 
synthetic speech. Since we are particularly interested in 
deterministic modifications that can be easily implemented 
and efficiently applied, we considered two different options 
during our design: the non-adaptive spectral shaping filter 
used previously in [26], and the spectral slope modification 
proposed in [6] (see Figure 3 for a graphical explanation of 
both). We finally chose the spectral shaping approach for two 
main reasons: first, it is more consistent with measurements 
reported in recent works [28][29]; second, it does not produce 
a significant alteration in the signal quality, while modifying 
the spectral slope up to the Nyquist frequency may result in 
local high-frequency artifacts. 
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Figure 3: Spectral shaping filter (solid line) and 
15dB/dec spectral slope (dashed line). 

Let us define Hi
(k) as the amplitude response of the spectral 

shaping filter depicted in Figure 3 at the ith harmonic 
frequency of the kth frame. The final harmonic amplitudes to 
be used during speech waveform reconstruction are given by 
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where ê(k) is given by (2). No modification is performed on the 
minimum phases obtained from the Mel-cepstral coefficients 
[14]. 

4. Results 
As detailed in [8], the described system was evaluated together 
with several others in the context of the Hurricane Challenge 
(system identifier: PSSDRC-syn). In the particular case of 
TTS systems, the training data included 2863 short sentences 
recorded by a male native British English talker at 16 kHz 
sampling rate. During the evaluation, TTS systems were given 
input texts to generate 180 phonetically balanced sentences 
from the Harvard corpus [30]. After synthesis and/or 
processing, signals were mixed with two types of noise 
maskers: speech-shaped noise (SSN) and competing speaker 
(CS) noise, at three different SNR values each: –9dB, –4dB 
and 1dB for SSN; –21 dB, –14 dB and –7dB for CS. A 
perceptual test was carried out at CSTR, Univ. of Edinburgh, 
in which 175 participants with British English as native 
language listened to synthetic and reference utterances mixed 
with noise in sound-isolated booths and were asked to type 
what they heard. They were not allowed to listen to the same 
sentence more than once. After collecting all the individual 
scores, the global percentage of correctly identified words was 
calculated by averaging. In addition, the gain (equivalent SNR 
increment) over unmodified natural or synthetic speech was 
calculated based on fits to psychometric functions. 

Figure 4 shows the word recognition accuracy scores 
achieved by our system and also by two baseline systems: 
unmodified natural speech and artificial speech generated by a 
reference TTS system. Such a reference TTS is a state-of-the-
art HMM-based synthesizer fed on Mel-cepstral coefficients, 
band aperiodicities and Mel-scaled f0. Figure 4 also shows the 
equivalent gain of the proposed system over these two baseline 
systems. Interestingly, speech generated by the reference TTS 
is much less intelligible than natural speech in noise regardless 
of the noise type. This means that the statistical modeling + 
generation framework has a non negligible impact on speech 
intelligibility, at least for the amount of training data used in 
this evaluation. This said, the proposed system clearly 
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outperforms the reference TTS in every noise conditions, the 
gain being significantly larger when the SNR is low. It is even 
more intelligible than natural speech in low SNRs, while in 
high SNRs the proposed enhancing modifications do not 
totally compensate the loss caused by the statistical synthesis 
framework. The relative performance of the proposed system 
with respect to other TTS systems taking part in the Hurricane 
Challenge is reported in [8]. 

All these results confirm that it is certainly possible to 
generate highly intelligible synthetic speech even when the 
database has been recorded in typical silent conditions and no 
adaptation data are available. Satisfactory results are obtained 
just by using only a relatively simple harmonic vocoder and a 
set of deterministic noise-independent modifications. 
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Figure 4: Results of the evaluation in terms of word 
recognition accuracy for (a) competing speaker noise 
and (b) speech-shaped noise. Error bars: ± standard 
deviation. The numbers above the bars indicate the 
equivalent gain of the proposed system over the 
corresponding baseline system. 

5. Conclusions 
This paper has described a HMM-based TTS system that 
includes several noise-independent prosodic and spectral 
modifications to enhance the intelligibility of synthetic speech 
in noise. Specifically, modifications are made on duration, 
pitch level and range, energy contour, formant sharpness, and 
intensity of particular spectral bands. A relatively simple 
harmonic model based vocoder provides the necessary 
flexibility for signal manipulation and facilitates the 
implementation of the system. The results of a large subjective 
test confirm the effectiveness of the proposed techniques. 
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