Discrete Choice Models for Non-Intrusive Quality Assessment
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Abstract

Non-intrusive signal quality assessment in general, andpt
plication to speech signal processing, in particular,dsugx-
tensively upon statistical regression models. Commotig, t
raw preference scores used for fitting these models belong to
a categorical scale. Averaging the scores over a numbesbf te
subjects results in smooth, close-to-continuous ratihgs, jus-
tifying the use of regression as opposed to classificatiotatso

A form of marginalization, averaging subjective ratingkes
away useful information about the reliability of individuast
points. Using a model tailored to the raw data achieves highl
competitive performance in terms of conventional perfaroea
measures while providing the additional advantage of iflent
ing the usability of individual test points. In this papee won-
sider the application of discrete choice models to nonisite
quality assessment of speech.

Index Terms: non-intrusive quality assessment, discrete choice
model, distribution fitting

1. Introduction

Model-based quality assessment (QA), also referred tojas-ob

tive QA, has as goal the replacement of costly, time-consgmi
and, at times, infeasible subjective testing. Ideally, alehdor

QA would replicate the processing stages taking place ihtikhe
man auditory periphery and the central nervous system.ties li

is known, however, about how preference ratings are formed i
the brain, an algorithmic mapping from features to prefeeen
scores is used instead. The parameters of the mapping are in-
ferred using large databases with speech utterances ared cor
sponding subjective ratings.

With respect to the origin of the features a QA model is
classified as intrusive if both the clean and the noisy vesal
the signals are used [1], and as non-intrusive if only th&yoi
signals are used [2], [3]. In terms of established perforean
measures, intrusive models achieve, on average, hightarper
mance. The dependence on the clean signals, however, pre-
cludes their use in on-line applications.

A number of different protocols for absolute preference
elicitation are used in practice. While the scale is typjcal
discrete, the resolution varies. Averaging the originaings
over the test subject dimension effectively produces aimont
uous scale where applying a regression model is the natural
choice. Averaging, on the other hand, takes away informatio
pertaining to the relevance of the individual utterances.aih
to exploit this information by fitting a model tailored to ths-
crete data.
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Classification is the problem of choosing one out of sev-
eral and finitely many, alternatives, e.g., [4]. Designingpad
classifier can be a challenging task when the number of choice
categories is high. Classifiers for application in QA neethke
into account that preference ratings exhibit a large spozad
the set of possible choices [5]. It is, therefore, impemtivuse
probabilistic models, i.e., systems that output the priibais
with which a given data point belongs to each category.

The data we work with [5], is collected using a subjective
testing protocol based on five ordered categories, rangomg f
"bad” to "excellent”. This protocol is applied to the evalioe
of signal quality after compression and transmission [@] &n
extensively used for training QA models [2], [3]. The relaty
low number of choice categories makes the design of a classi-
fier an attractive approach. For higher resolution promcahd
depending on the amount of available training data, it may be
more attractive to consider a regression model.

The architecture of the proposed system is based on a dis-
crete choice model (DCM) [7]. In particular, we work with an
ordered logit model, suitable within a maximum likelihooat p
rameter estimation setting, and an ordered probit modél, su
able within a Bayesian parameter estimation setting. @ualer
DCMs, as the name suggests, perform classification when the
choice categories are arranged in an order, which makes them
suitable for application to QA. Fitting a DCM to the data eeff
tively fits the distribution of the discrete ratings for edicining
data point. As a result, within the limitations of the model a
chitecture, a DCM can be used to predict both the mean and the
variance of the test data. Experimental results reveal payh
formance both in terms of conventional performance measure
such as correlation coefficient and root mean-square (RMS) e
ror [2] as well as Kullback-Leibler (KL) divergence betweée
predictive and the empirical preference distributions.

This paper is organized as follows. Theory is presented in
Section 2, considering both the ML and the Bayesian infexenc
paradigms. The experimental setting, including the featat
and the data, and experimental results are presented iliSect
3. We conclude with Section 4.

2. Theoretical Background

DCM for ordered data, such as the output of quality rating ex-
periments, have a hierarchical structure consisting oftenta
variable, calledutility, and a set of decision thresholds, as il-
lustrated in Figure 1, [7]. The utility, a scalar and proltiabt
random variable, can be viewed as an internal representatio
the perceived quality. As the utility is not observable ditr-



acteristics can only be inferred in view of the choices reagta
by the data. The utility of utterandes defined with a general
probabilistic model of the form

Ui 25(01) + €, (1)

whered are features extracted from the signg],) is some ap-
propriate function and is noise. The probability of observing
a particular category choice for a given utterance, is abthi
by integrating the utility within the thresholds identifig this
category.

C| Category "I"
k‘ Upper threshold of CI

Utility pdf, f(u)

Utility, u

Figure 1: A five-category ordinal DCM.

For convenience, it is assumed thatVi are independent
and identically distributed (i.i.d.). The part of the asgqtion

concerning independence can easily be motivated and is used

throughout the preference modeling literature [7]. Thaamot
of identity of the distributions is the more restrictive paf the
assumption as it implies that conditional on the parameiérs
s (.), the utility has a constant variance. This assumption ap-
pears reasonable for a formal test with selected utteramaes
need not hold in general. The advantages of tractable mathem
ical analysis, together with high performance results, dxa,
favor the i.i.d. assumption.

With respect to the functios(.), we chose to work with a
linear model of the form

s(0;) =w"6,, @)

wherew is the vector of model coefficients. This choice is mo-
tivated by the simplified analysis of the resulting modelexiN
we review the specifics of the ordered ML and Bayesian DCMs.

2.1. Maximum Likelihood Set-up

In an ML set-up, the thresholds, ! € {1, 2, 3,4} and the co-
efficientsw are assumed to be deterministic parameters. To ob-
tain a closed-form expression for the likelihood of eachisien
we choose to work with a Gumbel distribution, a particulaseca
of the generalized extreme value distribution, épeffectively
deriving an ordered logit model.

By introducing a constant feature into the feature set we
can assume, without loss of generality, théd zero-mean. As
a result, the probability and cumulative density functiohthe
utility, for a given utterance, are obtained of the form:
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where the parametét determines the variance of the utility as
’%:BQ and~ is the Euler-Mascheroni constant. Note that since

we already assumed that the variance of the utility is comsita
is acceptable to associgfewith any feasible numerical value.
The model is scale invariant as scaling the variance is campe
sated for by scaling the separation among the thresholds.

Let p (C,]6:, w, 8, k) denote the probability of choosing
categoryC; for utterance given the model. Then

p(Cj|9i7W7ﬁ7k) = FG(k]’|0i7W7B) - FG(kj—1|0i7w76())
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and the log-likelihood of the observed data becomes

N J
LL =" Milog {p (C;|6:,w, 5, K)},  (6)

i=1 j=1

whereN is the number of utteranced, = 5 is the number of
choice categories antl;; is the number of times that category
C; was selected for utteranée The optimization problem of
training the model is finally formulated as

argmaxy ,LL s.t.
ki—ka < 0
ko —ks <
ks—ks < 0, (7)

where the constraints impose the ordering of the threshdlis
gradient and the hessian of the above objective functioth wi
respect to the model parameters are readily derived inalose
form. We note that while the objective is not convex, experi-
mental results obtained with feasible initial values arasie
tently good. Lack of convexity, however, precludes featkee
lection from a larger set of features based. amorm constraint
[8]. This limits the use of the ML-based model to a preselgcte
feature set.

2.2. Bayesian Set-up

In a Bayesian set-up, all the unknown model parameters are
assumed to be random variables. This allows for taking into
account the uncertainty about their values in view of the.dat
For the Bayesian ordered DCM, we assume- N (0, 0?).
The reason lies with the computational advantage achieyed b
introducing an augmented likelihood function [9]. Whileist
not feasible to derive a closed-form solution, efficient phng
from the conditional posteriors of the unknown model parame
ters is possible due to the augmentation procedure [9], [10]

Before describing the model we introduce the following no-
tation. Let the vecto€ contain all the category choices that are
observed in the training data. As there is a fixed numBer
of ratings for each utterance, whefe = 24 in [5], we have
dim (C) = RN. The augmented likelihood includes explicitly
the utility. We useu to denote the vector of utilities that cor-
respond toC. Thus for the category choice i@, there is an
utility in @, that lies in the range between the thresholds of this
category.

Using the above notation leads to the following expression
for the joint posterior distribution:

p(w,k,alC) o p(a,Clw,k)p(w,k)

x p (C|ﬁ,w,k) p(ajw,k) -
p(w)p(k), 8)

where the assumption of constan{C) is used broadly in the
framework of Bayesian inference [4]. The expression in (8)
reflects the assumption of prior independence between the se



of the model coefficients and the set of the category threshol
From the model definition it follows that:

dim(C)
plaw, k)= [[ N(w'0m0?), (0
m=1

whereke ; and ke represent the lower and the upper
thresholds of the category choice@h,,, and the indicator func-
tion I (.) equals one when the condition inside the brackets is
satisfied and zero otherwise. The above expressions dtestr
the underlying assumption of independence among the thdivi
ual rating tasks. As the likelihood function is defined imter

of the Normal density, conjugate priors can be defined for the
unknown model parameters:

Nr (wo, Xo) 11
X Njfl (ko,Ao)I(kl S kg S k3 S k4),(12)

p(w)
p (k)

where L is the dimensionality of the feature space ahwas
defined as the number of categories. A proportionality siga w
used in (12) instead of equality together with the appraeria
scaling factor to simplify the expression. The role of thai¢a-
tor function in (12) is to enforce the constraint that thestiir-
olds are ordered.

The use of conjugate priors leads to conditional posteriors
in closed-form. The a-posteriori utility becomes

p (ﬁm|kaycm) x N (WTGWMUS) .
I(kg,,—1 < am <kg,,),(13)

where the constant of proportionality is trivial to obtaux not
needed for sampling [10]. For the thresholds, assuming prio
independence, it can be shown that

p (kilw,kx,0,C) o N (kou, Aou)l (k}nf <k < k?up)
k;nf

sup
kl

max (kl—h max (u(l)))

min (kl+1, min (u(z+1))) , (24)
wheremax (u(;)) andmin (u¢41)) denote the largest utility
value drawn from categoryand the smallest utility value drawn
from categoryl + 1. The indicator function uses the two scalars
ki** andk;"?, easily obtained conditional on the utility, to con-
strain each threshold to its permissible range.

Finally, the conditional posterior for the model coeffidien
is obtained of the form

P(W|k7ﬁ7c) = N (tw,Sw)
1 _ 1 _
= <—2ﬁT®+WOTZOl) (—2®T®+201)
o2 o2
(1 N\
Zw - 0—626 6+20 5

where® ¢ R*V*L s the matrix in which each row contains

the features associated with an individual rating task.
Expressions (13), (14) and (15) are all based on the Nor-

mal distribution and facilitate Gibbs sampling [10]. Thga

rithm loops through the individual posteriors, drawing gées

by conditioning always on the latest values of the parameter

After an initial burn-in period, the Gibbs sampler converge

the true posterior of the model parameters and producesidepe
dent draws from these distributions. The draws can be used to
evaluate the predictive distribution over the choice ocatieg

for a previously unseen data point, through stochastigiate
tion, with selectively high precision. In practice, a ligdtnum-

ber of independent draws is sufficient for a good approxiomati

3. Experiments

The experimental set-up and the validation results areepted

in this section. The feature set and the database used inthe e
periments are described in Section 3.1. The predictiveoperf
mance of the models, measured in terms of correlation, RMS
error and KL divergence, is illustrated in Section 3.2.

3.1. Experimental Set-up

The feature set used in these experiments was proposed]in [11
A subset of band-based modulation spectrum (MS) features wa
combined with a subset of the source and vocal tract descsipt
from [2]. The modulation spectrum is broadly used for featur
extraction in QA as it allows partial separation of the chtea
istics of the speech and the noise signals. We extractedhthe r
MS features on a per-frame basis and averaged along the time
dimension for active frames only. The resulting features ar
global, i.e., they are representative of the whole uttezafitie
final feature set contains forty-seven features and wastsele
from the larger original set through side experiments.

We note that while preliminary feature selection is impor-
tant to reduce overfitting, it mostly affects the ML case. In
the Bayesian case, uncertainty for the model parameters is a
counted for by the model and the risk for overfitting is redlice
in a natural way. Apart from adding new features, it is possi-
ble to further increase the flexibility of the model, and eerr
spondingly its performance, by using a polynomially extshd
version of the base feature set. This approach, which cgn, e.
emphasize rare occurrences, was considered in [11]. We limi
our analysis to a second order extension.

The database used for validating the models, [5], consists
of seven data sets prepared by four different laboratoFResr
languages and a large number of distortion conditionsudhicl
ing but not limited to additive noise and coding artifacts aep-
resented in the data. The motivation to work with this dasaba
is twofold: i) it is freely available facilitating validadn and
comparison among proposed methods and ii) it is highly het-
erogenous and, as such, a natural choice for validation of QA
algorithms. The total number of utteranced328. Models are
trained on six data sets at a time and validated on the seventh

The following settings were used for the Gibbs sampler in
the Bayesian implementation. The burn-in was se2@0600
draws from each conditional posterior. The number of ctdiéc
samples, used to evaluate the statistics of interesta@s A

—1 . .
separation of five samples between two collected samples was

imposed to reduce dependencies. Arbitrary but feasibleegal
were chosen for algorithm initialization. One completedoo

(15)f the Gibbs sampler effectively produced one model realiza

tion. The predictive distributions from each of these medet
a given test point were averaged to obtain a single distabut
which was then used for performance evaluation.

3.2. Validation Results

The model performance in terms of per-condition Pearson cor
relation coefficienfp,. and RMS error,. between the mean



Table 1: Per conditioifipc) Pearson correlation and RMS .

Table 2: Average entropy and KL divergence in bits.

P.563 ML DCM Bayesian DCM| | dataset | Entropy | KL div.,, ML | KL div., Bayes |
dataset | ppc | 7pe Poc_| Tpe Poc_| Tpe BNR-X3 | 1.738 0.383 0.300
BNR-X3 | 0.911| 0.345|| 0.935| 0.298 | 0.945| 0.268 CNET-X3 1.501 0.667 0.518
CNET-X3 | 0.888 | 0.378| 0.840| 0.377 | 0.873 | 0.340 CSELT-X3 | 1.483 0.814 0.997
CSELT-X3 | 0.798 | 0.398 || 0.851| 0.482 || 0.851| 0.498 NTT-X3 1.480 0.430 0.416
NTT-X3 0.902| 0.329 || 0.882| 0.322 || 0.883| 0.323 BNR-X1 1.527 0.402 0.301
BNR-X1 | 0.867 | 0.349 || 0.901| 0.355| 0.912| 0.324 CNET-X1 1.447 0.446 0.352
CNET-X1 | 0.843 | 0.457| 0.887 | 0.368 | 0.910| 0.321 NTT-X1 1.510 0.328 0.297
NTT-X1 0.923 | 0.270 || 0.901 | 0.291 | 0.924 | 0.260 mean 1.527 0.496 0.454
mean 0.876 | 0.361 || 0.885 | 0.356 || 0.900 | 0.333
4. Conclusions
s KCavan 015 v o] KLt 5310 R Discrete choice models are a natural candidate for apjgicat
3 o ° o4 v to QA as they are well-suited to the original data. The pro-
ges 8 o° posed models learn efficiently from a limited amount of train
é“ ° ° v ing data, testifying to the appropriateness of the choicthef
A o ° T VVE’W‘ . feature set and the statistical inference approach. gittie
O Predicte O Predicted individual preference scores, rather than the averagesall-

5 1

2 3 4 2 3 4
Category index Category index

Figure 2: Predictive and empirical distributions.

of the predictive and the mean of the empirical (computethfro
R = 24 preference ratings per utterance) distributions are pre-
sented in Table 1. These measures, well-established fpethe
formance evaluation of QA models [2], [3], were computed by
using the numerical representati¢n, 2, 3,4, 5} of the choice
categories. A third order monotonic polynomial mapping was
applied to the objective mean estimates before computirrg-co
lation and RMS error. The motivation for using such a mapping
can be found, e.g., in [2]. To evaluate how close the predic-
tive distribution is to the estimated distribution, we usieel KL
divergence. The corresponding results are presented Ia Zab

Performance in terms of correlation and RMS error illus-
trates that the proposed model is capable of learning comple
dependencies from a relatively small humber of data points.
A comparison with results obtained with the model from [2],
which is the current ITU-T standard for non-intrusive qtyadis-
sessment, also favors the proposed approach. A compagson b
tween the ML and the Bayesian implementations illustrates t
power of the Bayesian learning paradigm. Taking into caersid
ation the uncertainty of model parameters reduces ovargfiid
the training data and results in significantly higher perfance
for the Bayesian model.

The entropy of the subjective distribution and the KL diver-
gence between the subjective and the predictive distdbsti
averaged over all test points in the test data set providinthe
tuition for assessing the model performance. In Figure 2 we
present the empirical and the predictive distributions tfeo
randomly chosen utterances from the NTT-X1 data set. These
results were produced with the ML model. The entropy of the
empirical distribution and the KL divergence are also iatkd.

The experimental results suggest that both models produce
an informative fit to the distribution of the subjective data-
terestingly, this is achieved with the limited flexibilityqvided
by optimally positioning the category thresholds. Even enor
interesting, in this respect, is the result that the thrieishare
approximately equidistantly spaced. Similarly to the cagh

the other two performance measures, the Bayesian model re-

sults in better performance on average.

lows modeling of the distribution of these scores and makes i
possible to predict the reliability of individual test ptérsub-
ject to the constraint of constant utility variance. The @din
equidistant spacing among the thresholds, likely relatetthe
constant utility variance, suggests the presence of rexhaydn

the model definitions. This redundancy can probably bezetili

to reduce the complexity of the models.
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