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Abstract
Non-intrusive signal quality assessment in general, and its ap-
plication to speech signal processing, in particular, builds ex-
tensively upon statistical regression models. Commonly, the
raw preference scores used for fitting these models belong to
a categorical scale. Averaging the scores over a number of test
subjects results in smooth, close-to-continuous ratings,thus jus-
tifying the use of regression as opposed to classification models.
A form of marginalization, averaging subjective ratings takes
away useful information about the reliability of individual test
points. Using a model tailored to the raw data achieves highly
competitive performance in terms of conventional performance
measures while providing the additional advantage of identify-
ing the usability of individual test points. In this paper, we con-
sider the application of discrete choice models to non-intrusive
quality assessment of speech.
Index Terms: non-intrusive quality assessment, discrete choice
model, distribution fitting

1. Introduction
Model-based quality assessment (QA), also referred to as objec-
tive QA, has as goal the replacement of costly, time-consuming
and, at times, infeasible subjective testing. Ideally, a model for
QA would replicate the processing stages taking place in thehu-
man auditory periphery and the central nervous system. As little
is known, however, about how preference ratings are formed in
the brain, an algorithmic mapping from features to preference
scores is used instead. The parameters of the mapping are in-
ferred using large databases with speech utterances and corre-
sponding subjective ratings.

With respect to the origin of the features a QA model is
classified as intrusive if both the clean and the noisy versions of
the signals are used [1], and as non-intrusive if only the noisy
signals are used [2], [3]. In terms of established performance
measures, intrusive models achieve, on average, higher perfor-
mance. The dependence on the clean signals, however, pre-
cludes their use in on-line applications.

A number of different protocols for absolute preference
elicitation are used in practice. While the scale is typically
discrete, the resolution varies. Averaging the original ratings
over the test subject dimension effectively produces a contin-
uous scale where applying a regression model is the natural
choice. Averaging, on the other hand, takes away information
pertaining to the relevance of the individual utterances. We aim
to exploit this information by fitting a model tailored to thedis-
crete data.

Classification is the problem of choosing one out of sev-
eral and finitely many, alternatives, e.g., [4]. Designing agood
classifier can be a challenging task when the number of choice
categories is high. Classifiers for application in QA need totake
into account that preference ratings exhibit a large spreadover
the set of possible choices [5]. It is, therefore, imperative to use
probabilistic models, i.e., systems that output the probabilities
with which a given data point belongs to each category.

The data we work with [5], is collected using a subjective
testing protocol based on five ordered categories, ranging from
”bad” to ”excellent”. This protocol is applied to the evaluation
of signal quality after compression and transmission [6] and is
extensively used for training QA models [2], [3]. The relatively
low number of choice categories makes the design of a classi-
fier an attractive approach. For higher resolution protocols, and
depending on the amount of available training data, it may be
more attractive to consider a regression model.

The architecture of the proposed system is based on a dis-
crete choice model (DCM) [7]. In particular, we work with an
ordered logit model, suitable within a maximum likelihood pa-
rameter estimation setting, and an ordered probit model, suit-
able within a Bayesian parameter estimation setting. Ordered
DCMs, as the name suggests, perform classification when the
choice categories are arranged in an order, which makes them
suitable for application to QA. Fitting a DCM to the data, effec-
tively fits the distribution of the discrete ratings for eachtraining
data point. As a result, within the limitations of the model ar-
chitecture, a DCM can be used to predict both the mean and the
variance of the test data. Experimental results reveal highper-
formance both in terms of conventional performance measures
such as correlation coefficient and root mean-square (RMS) er-
ror [2] as well as Kullback-Leibler (KL) divergence betweenthe
predictive and the empirical preference distributions.

This paper is organized as follows. Theory is presented in
Section 2, considering both the ML and the Bayesian inference
paradigms. The experimental setting, including the feature set
and the data, and experimental results are presented in Section
3. We conclude with Section 4.

2. Theoretical Background
DCM for ordered data, such as the output of quality rating ex-
periments, have a hierarchical structure consisting of a latent
variable, calledutility, and a set of decision thresholds, as il-
lustrated in Figure 1, [7]. The utility, a scalar and probabilistic
random variable, can be viewed as an internal representation of
the perceived quality. As the utility is not observable, itschar-



acteristics can only be inferred in view of the choices revealed
by the data. The utility of utterancei is defined with a general
probabilistic model of the form

ui = s (θi) + ǫi, (1)

whereθ are features extracted from the signal,s (.) is some ap-
propriate function andǫ is noise. The probability of observing
a particular category choice for a given utterance, is obtained
by integrating the utility within the thresholds identifying this
category.
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Figure 1: A five-category ordinal DCM.

For convenience, it is assumed thatǫi, ∀i are independent
and identically distributed (i.i.d.). The part of the assumption
concerning independence can easily be motivated and is used
throughout the preference modeling literature [7]. The notion
of identity of the distributions is the more restrictive part of the
assumption as it implies that conditional on the parametersof
s (.), the utility has a constant variance. This assumption ap-
pears reasonable for a formal test with selected utterancesbut
need not hold in general. The advantages of tractable mathemat-
ical analysis, together with high performance results, however,
favor the i.i.d. assumption.

With respect to the functions (.), we chose to work with a
linear model of the form

s (θi) = w
T
θi, (2)

wherew is the vector of model coefficients. This choice is mo-
tivated by the simplified analysis of the resulting models. Next
we review the specifics of the ordered ML and Bayesian DCMs.

2.1. Maximum Likelihood Set-up

In an ML set-up, the thresholdskl, l ∈ {1, 2, 3, 4} and the co-
efficientsw are assumed to be deterministic parameters. To ob-
tain a closed-form expression for the likelihood of each decision
we choose to work with a Gumbel distribution, a particular case
of the generalized extreme value distribution, forǫ, effectively
deriving an ordered logit model.

By introducing a constant feature into the feature set we
can assume, without loss of generality, thatǫ is zero-mean. As
a result, the probability and cumulative density functionsof the
utility, for a given utterance, are obtained of the form:

fG(ui) =
e
−

ui−w
Tθi+βγ

β e−e
−

ui−w
Tθi+βγ

β

β
(3)

FG(ui) = e
−e

−

ui−w
Tθi+βγ

β

, (4)

where the parameterβ determines the variance of the utility as
π2

6
β2 andγ is the Euler-Mascheroni constant. Note that since

we already assumed that the variance of the utility is constant, it
is acceptable to associateβ with any feasible numerical value.
The model is scale invariant as scaling the variance is compen-
sated for by scaling the separation among the thresholds.

Let p (Cj |θi,w, β,k) denote the probability of choosing
categoryCj for utterancei given the model. Then

p (Cj |θi,w, β,k) = FG(kj |θi,w, β)− FG(kj−1|θi,w, β)
(5)

and the log-likelihood of the observed data becomes

LL =
N
∑

i=1

J
∑

j=1

Mij log {p (Cj |θi,w, β,k)} , (6)

whereN is the number of utterances,J = 5 is the number of
choice categories andMij is the number of times that category
Cj was selected for utterancei. The optimization problem of
training the model is finally formulated as

argmax
k,wLL s.t.

k1 − k2 ≤ 0

k2 − k3 ≤ 0

k3 − k4 ≤ 0, (7)

where the constraints impose the ordering of the thresholds. The
gradient and the hessian of the above objective function, with
respect to the model parameters are readily derived in closed-
form. We note that while the objective is not convex, experi-
mental results obtained with feasible initial values are consis-
tently good. Lack of convexity, however, precludes featurese-
lection from a larger set of features based onL1 norm constraint
[8]. This limits the use of the ML-based model to a preselected
feature set.

2.2. Bayesian Set-up

In a Bayesian set-up, all the unknown model parameters are
assumed to be random variables. This allows for taking into
account the uncertainty about their values in view of the data.
For the Bayesian ordered DCM, we assumeǫ ∼ N

(

0, σ2
ǫ

)

.
The reason lies with the computational advantage achieved by
introducing an augmented likelihood function [9]. While itis
not feasible to derive a closed-form solution, efficient sampling
from the conditional posteriors of the unknown model parame-
ters is possible due to the augmentation procedure [9], [10].

Before describing the model we introduce the following no-
tation. Let the vector̄C contain all the category choices that are
observed in the training data. As there is a fixed numberR
of ratings for each utterance, whereR = 24 in [5], we have
dim

(

C̄
)

= RN . The augmented likelihood includes explicitly
the utility. We useū to denote the vector of utilities that cor-
respond toC̄. Thus for the category choice in̄Cm there is an
utility in ūm that lies in the range between the thresholds of this
category.

Using the above notation leads to the following expression
for the joint posterior distribution:

p
(

w,k, ū|C̄
)

∝ p
(

ū, C̄|w,k
)

p (w,k)

∝ p
(

C̄|ū,w,k
)

p (ū|w,k) ·

p (w) p (k) , (8)

where the assumption of constantp
(

C̄
)

is used broadly in the
framework of Bayesian inference [4]. The expression in (8)
reflects the assumption of prior independence between the set



of the model coefficients and the set of the category thresholds.
From the model definition it follows that:

p
(

C̄|ū,w,k
)

=

dim(C̄)
∏

m=1

I
(

kC̄m−1 ≤ ūm ≤ kC̄m

)

(9)

p (ū|w,k) =

dim(C̄)
∏

m=1

N
(

w
T
θm, σ

2
ǫ

)

, (10)

where kC̄m−1 and kC̄m
represent the lower and the upper

thresholds of the category choice in̄Cm, and the indicator func-
tion I (.) equals one when the condition inside the brackets is
satisfied and zero otherwise. The above expressions illustrate
the underlying assumption of independence among the individ-
ual rating tasks. As the likelihood function is defined in terms
of the Normal density, conjugate priors can be defined for the
unknown model parameters:

p (w) = NL (w0,Σ0) (11)

p (k) ∝ NJ−1 (k0,Λ0) I (k1 ≤ k2 ≤ k3 ≤ k4) , (12)

whereL is the dimensionality of the feature space andJ was
defined as the number of categories. A proportionality sign was
used in (12) instead of equality together with the appropriate
scaling factor to simplify the expression. The role of the indica-
tor function in (12) is to enforce the constraint that the thresh-
olds are ordered.

The use of conjugate priors leads to conditional posteriors
in closed-form. The a-posteriori utility becomes

p
(

ūm|w,k, C̄m

)

∝ N
(

w
T
θm, σ

2
ǫ

)

·

I
(

kC̄m−1 ≤ ūm ≤ kC̄m

)

,(13)

where the constant of proportionality is trivial to obtain but not
needed for sampling [10]. For the thresholds, assuming prior
independence, it can be shown that

p
(

kl|w,k 6=l, ū, C̄
)

∝ N (k0,l,Λ0,ll) I
(

kinf
l ≤ kl ≤ ksup

l

)

kinf
l = max

(

kl−1,max
(

u(l)

))

ksup
l = min

(

kl+1,min
(

u(l+1)

))

, (14)

wheremax
(

u(l)

)

andmin
(

u(l+1)

)

denote the largest utility
value drawn from categoryl and the smallest utility value drawn
from categoryl+1. The indicator function uses the two scalars
kinf
l andksup

l , easily obtained conditional on the utility, to con-
strain each threshold to its permissible range.

Finally, the conditional posterior for the model coefficients
is obtained of the form

p
(

w|k, ū, C̄
)

= N (µw,Σw)

µw =

(

1

σ2
ǫ

ū
T
Θ+w

T
0 Σ

−1
0

)(

1

σ2
ǫ

Θ
T
Θ+Σ−1

0

)−1

Σw =

(

1

σ2
ǫ

Θ
T
Θ+Σ−1

0

)−1

, (15)

whereΘ ∈ R
RN×L is the matrix in which each row contains

the features associated with an individual rating task.
Expressions (13), (14) and (15) are all based on the Nor-

mal distribution and facilitate Gibbs sampling [10]. The algo-
rithm loops through the individual posteriors, drawing samples
by conditioning always on the latest values of the parameters.

After an initial burn-in period, the Gibbs sampler converges to
the true posterior of the model parameters and produces depen-
dent draws from these distributions. The draws can be used to
evaluate the predictive distribution over the choice categories
for a previously unseen data point, through stochastic integra-
tion, with selectively high precision. In practice, a limited num-
ber of independent draws is sufficient for a good approximation.

3. Experiments
The experimental set-up and the validation results are presented
in this section. The feature set and the database used in the ex-
periments are described in Section 3.1. The predictive perfor-
mance of the models, measured in terms of correlation, RMS
error and KL divergence, is illustrated in Section 3.2.

3.1. Experimental Set-up

The feature set used in these experiments was proposed in [11].
A subset of band-based modulation spectrum (MS) features was
combined with a subset of the source and vocal tract descriptors
from [2]. The modulation spectrum is broadly used for feature
extraction in QA as it allows partial separation of the character-
istics of the speech and the noise signals. We extracted the raw
MS features on a per-frame basis and averaged along the time
dimension for active frames only. The resulting features are
global, i.e., they are representative of the whole utterance. The
final feature set contains forty-seven features and was selected
from the larger original set through side experiments.

We note that while preliminary feature selection is impor-
tant to reduce overfitting, it mostly affects the ML case. In
the Bayesian case, uncertainty for the model parameters is ac-
counted for by the model and the risk for overfitting is reduced
in a natural way. Apart from adding new features, it is possi-
ble to further increase the flexibility of the model, and corre-
spondingly its performance, by using a polynomially extended
version of the base feature set. This approach, which can, e.g.,
emphasize rare occurrences, was considered in [11]. We limit
our analysis to a second order extension.

The database used for validating the models, [5], consists
of seven data sets prepared by four different laboratories.Four
languages and a large number of distortion conditions, includ-
ing but not limited to additive noise and coding artifacts are rep-
resented in the data. The motivation to work with this database
is twofold: i) it is freely available facilitating validation and
comparison among proposed methods and ii) it is highly het-
erogenous and, as such, a natural choice for validation of QA
algorithms. The total number of utterances is1328. Models are
trained on six data sets at a time and validated on the seventh.

The following settings were used for the Gibbs sampler in
the Bayesian implementation. The burn-in was set to20000
draws from each conditional posterior. The number of collected
samples, used to evaluate the statistics of interest was5000. A
separation of five samples between two collected samples was
imposed to reduce dependencies. Arbitrary but feasible values
were chosen for algorithm initialization. One complete loop
of the Gibbs sampler effectively produced one model realiza-
tion. The predictive distributions from each of these models for
a given test point were averaged to obtain a single distribution,
which was then used for performance evaluation.

3.2. Validation Results

The model performance in terms of per-condition Pearson cor-
relation coefficientρpc and RMS errorrpc between the mean



Table 1: Per condition(pc) Pearson correlation and RMS .
P.563 ML DCM Bayesian DCM

data set ρpc rpc ρpc rpc ρpc rpc

BNR-X3 0.911 0.345 0.935 0.298 0.945 0.268
CNET-X3 0.888 0.378 0.840 0.377 0.873 0.340
CSELT-X3 0.798 0.398 0.851 0.482 0.851 0.498
NTT-X3 0.902 0.329 0.882 0.322 0.883 0.323
BNR-X1 0.867 0.349 0.901 0.355 0.912 0.324
CNET-X1 0.843 0.457 0.887 0.368 0.910 0.321
NTT-X1 0.923 0.270 0.901 0.291 0.924 0.260

mean 0.876 0.361 0.885 0.356 0.900 0.333
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Figure 2: Predictive and empirical distributions.

of the predictive and the mean of the empirical (computed from
R = 24 preference ratings per utterance) distributions are pre-
sented in Table 1. These measures, well-established for theper-
formance evaluation of QA models [2], [3], were computed by
using the numerical representation{1, 2, 3, 4, 5} of the choice
categories. A third order monotonic polynomial mapping was
applied to the objective mean estimates before computing corre-
lation and RMS error. The motivation for using such a mapping
can be found, e.g., in [2]. To evaluate how close the predic-
tive distribution is to the estimated distribution, we usedthe KL
divergence. The corresponding results are presented in Table 2.

Performance in terms of correlation and RMS error illus-
trates that the proposed model is capable of learning complex
dependencies from a relatively small number of data points.
A comparison with results obtained with the model from [2],
which is the current ITU-T standard for non-intrusive quality as-
sessment, also favors the proposed approach. A comparison be-
tween the ML and the Bayesian implementations illustrates the
power of the Bayesian learning paradigm. Taking into consider-
ation the uncertainty of model parameters reduces over-fitting to
the training data and results in significantly higher performance
for the Bayesian model.

The entropy of the subjective distribution and the KL diver-
gence between the subjective and the predictive distributions,
averaged over all test points in the test data set provide thein-
tuition for assessing the model performance. In Figure 2 we
present the empirical and the predictive distributions fortwo
randomly chosen utterances from the NTT-X1 data set. These
results were produced with the ML model. The entropy of the
empirical distribution and the KL divergence are also indicated.

The experimental results suggest that both models produce
an informative fit to the distribution of the subjective data. In-
terestingly, this is achieved with the limited flexibility provided
by optimally positioning the category thresholds. Even more
interesting, in this respect, is the result that the thresholds are
approximately equidistantly spaced. Similarly to the casewith
the other two performance measures, the Bayesian model re-
sults in better performance on average.

Table 2: Average entropy and KL divergence in bits.
data set Entropy KL div., ML KL div., Bayes

BNR-X3 1.738 0.383 0.300
CNET-X3 1.501 0.667 0.518
CSELT-X3 1.483 0.814 0.997
NTT-X3 1.480 0.430 0.416
BNR-X1 1.527 0.402 0.301
CNET-X1 1.447 0.446 0.352
NTT-X1 1.510 0.328 0.297

mean 1.527 0.496 0.454

4. Conclusions
Discrete choice models are a natural candidate for application
to QA as they are well-suited to the original data. The pro-
posed models learn efficiently from a limited amount of train-
ing data, testifying to the appropriateness of the choice ofthe
feature set and the statistical inference approach. Fitting the
individual preference scores, rather than the average values, al-
lows modeling of the distribution of these scores and makes it
possible to predict the reliability of individual test points sub-
ject to the constraint of constant utility variance. The almost
equidistant spacing among the thresholds, likely related to the
constant utility variance, suggests the presence of redundancy in
the model definitions. This redundancy can probably be utilized
to reduce the complexity of the models.
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